Modelling the Geographical Range of a Species with Variable Life-History

New pest modelling paper published in PLoS ONE.

Let me know what you think by adding comments to the PLoS ONE comments page of the article:

Macfadyen S, Kriticos DJ (2012) Modelling the Geographical Range of a Species with Variable Life-History. PLoS ONE 7(7): e40313. doi:10.1371/journal.pone.0040313

In this paper Darren and I show how a climatic niche model can be used to describe the potential geographic distribution of a pest species with variable life-history, and illustrate how to estimate biogeographic pest threats that vary across space. The models were used to explore factors that affect pest risk (irrigation and presences of host plant).

A combination of current distribution records and published experimental data were used to construct separate models for the asexual and sexual lineages of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) (bird cherry–oat aphid).  Rhopalosiphum padi is a pest of cereals in many countries around the world. Farmers rely heavily on the use of insecticides to control this pest, particularly in winter wheat and barley crops across Europe, as it is a vector of crop diseases. The two models were combined with knowledge of host plant presence to classify the global pest risk posed by R. padi.

Map of the world, showing risk categories for Rhopalosiphum padi invasion.


Two scenarios are shown that represent; (a), natural rainfall conditions; and (b), an irrigation scenario. Results are based on the output from sexual and asexual CLIMEX models and the presence or absence of the primary woody host plant. Invasion risk categories are based on the International Standard for Phytosanitary Measures (ISPM) (FAO 2006). ‘Endangered’ indicates areas that are at risk of R. padi populations establishing and persisting year-round, ‘Transient’ indicates areas that are at risk of seasonal reinvasion but conditions are not suitable for persistence year-round, and ‘Potentially endangered’ indicates areas at risk of persistent populations year-round if a suitable Prunus host plant were introduced. doi:10.1371/journal.pone.0040313.g004